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Abstract
Checksum and CRC algorithms have historically been studied
under the assumption that the data fed to the algorithms was
uniformly distributed. This paper examines the behavior of
checksums and CRCs over real data from various UNIX file
systems. We show that, when given real data in small to modest
pieces (e.g., 48 bytes), all the checksum algorithms have skewed
distributions. In one dramatic case, 0.01% of the check values
appeared nearly 15% of the time. These results have implications
for CRCs and checksums when applied to real data. They also
can cause a spectacular failure rate for both the TCP and ones-
complement Fletcher checksums when trying to detect certain types
of packet splices. When measured over several large file-systems,
the 16 bit TCP checksum performed about as well as a 10 bit CRC.

We show that for fragmentation-and-reassembly error models,
the checksum contribution of each fragment are, in effect, coloured
by the fragment’s offset in the splice. This coloring explains the
performance of Fletcher’s sum on non-uniform data, and shows
that placing checksum fields in a packet trailer is theoretically no
worse than a header checksum field. In practice, TCP trailer sums
outperform even Fletcher header sums.

1 Introduction
The behavior of checksum and cyclic redundancy check
(CRC) algorithms have historically been studied under
the assumption that the data fed to the algorithms was
uniformly distributed. (See, for instance, the work on
Fletcher’s checksum [2] and the AAL5 CRC[12, 4]). If
one assumes random data drawn from a uniform distribution
one can show a number of nice error detection properties
for various checksums and CRCs. But in the real world,
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communications data is rarely random. Much of the data
is character data, which has distinct skewing towards certain
values (for instance, the character ‘e’ in English). Binary
data has similarly non-random distribution of values, such as
a propensity to contain zeros.

This paper reports on experiments with running various
checksums and CRCs over real data from UNIX file systems.
We show that the highly non-uniform distribution of values
and the strong local correlation in real data causes extremely
irregular distributions of checksum and CRC values. In
some tests, less than 0.01% of the possible checksum values
occurred over 15% of the time. We particularly examine
the effects of this phenomenon when applied to the Internet
checksum used for IP, TCP, and UDP [9, 1] and compare it
to two variations of Fletcher’s checksum. We also report on
an experiment with placing the standard TCP checksum in
a packet trailer. A trailer checksum noticeably increases the
checksum’s effectiveness, and we prove why this is so.

2 CRCs vs. Checksums
Before examining the behavior of different algorithms, it is
worth briefly discussing the CRC and checksum algorithms
we used.

CRCs are based on polynomial arithmetic, base 2. CRC-
32 [5] is a 32-bit polynomial with several useful error
detection properties. It will detect all errors that span less
than 32 contiguous bits within a packet and all 2-bit errors
less than 2048 bits apart. It will also detect all cases where
there are an odd number of errors. For other types of errors,
if they occur in data which has uniformly distributed values,
the chance of not detecting an error is � in ���	� .

The concept of a checksum is less well defined. For the
purposes of data communication, the goal of a checksum
algorithm is to balance the effectiveness at detecting errors
against the cost of computing the check values. Furthermore,
it is expected that a checksum will work in conjunction with
other, stronger, data checks such as a CRC. For example,
MAC layers are expected to use a CRC to check that data
was not corrupted during transmission on the local media,
and checksums are used by higher layers to ensure that data
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was not corrupted in intermediate routers or by the sending
or receiving host.

The fact that checksums are typically the secondary level
of protection has often led to suggestions that checksums are
superfluous. Hard won experience, however, has shown that
checksums are necessary. Software errors (such as buffer
mismanagement) and even hardware errors (such as network
adapters with poor DMA hardware that sometimes fail to
fully DMA data) are surprisingly common and checksums
have been very useful in protecting against such errors.

The two most popular checksums are the Internet check-
sum used for IP, TCP, and UDP [9, 1] and Fletcher’s check-
sum [2]. They represent different balances between perfor-
mance cost and error detection.

The TCP checksum is a 16-bit ones-complement sum
of the data. This sum will catch any burst error of 15
bits or less[8], and all 16-bit burst errors except for those
which replace one 1’s complement zero with another (i.e., 16
adjacent 1 bits replaced by 16 zero bits, or vice-versa). Over
uniformly distributed data, it is expected to detect other types
of errors at a rate proportional to � in �

���
. The checksum also

has a major limitation: the sum of a set of 16-bit values is the
same, regardless of the order in which the values appear. The
checksum was chosen by the Internet community in the late
1970s after experimentation on the ARPANET suggested
the checksum was good enough and could be implemented
efficiently.

Fletcher’s checksum is designed to be a more robust error
detecting code. The checksum keeps two sums. One sum,�

, is a running sum of the data in 8-bit chunks. The other
sum, � , is a running sum of each byte multiplied by its
position from the end of the packet. This multiplication
incorporates positional information into the checksum to
protect against movement or transposition of data within the
packet. The two 8-bit sums are concatenated to generate
a 16-bit checksum. Fletcher also defined a 32-bit version,
where 16-bit sums are kept. The algorithm was defined for
both ones and twos-complement arithmetic. The version
used for the TP4 checksum and in this paper uses 8-bit
chunks. When performed in twos-complement, this 16-bit
checksum detects all single bit errors, a single error of less
than 16 bits in length, and all double bit errors separated by
16 bits or less. Though TP4 uses only the twos-complement
version, we investigated both ones- and twos-complement
Fletcher sums.

Historically, the TCP checksum and Fletcher’s checksum
have been viewed as offering a sharp tradeoff between
performance and error detection capabilities. The TCP
checksum requires one or two additions per machine word
of data (assuming the machine word is a multiple of 16
bits long), while Fletcher’s sum requires two additions per
byte (even if the computation is done in word-sized chunks).
As a result, measurements have typically shown the TCP
checksum to be two to four times faster [6, 11]. However,

Cells of First Packet Cells of Second Packet

Cells of Spliced Packet
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sum 1
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hdr 2
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Figure 1: Example AAL5 Splice

that difference may be declining on newer processors, where
the memory access time dominates any computational cost.

3 Work with AAL5

This study began as a study of the error scenarios for packet
splices in Asynchronous Transfer Mode (ATM) Adaptation
Layer 5 (AAL5). The AAL5 work helps motivate the rest of
the paper and so is explained briefly here.

3.1 What is a Packet Splice?

AAL5 sends packets as a series of ATM cells, with the
last cell specially marked using a bit in the ATM header.
A packet splice occurs when the right number of cells
are dropped such that pieces of two adjacent packets are
combined so that they appear to represent one AAL5 packet.
Figure 1 illustrates a splice: Two four-cell packets suffer a
loss of four cells, such that the first and third cell of the
first packet and the first and last cells of the second packet
are spliced together to look like a single four-cell packet.
It should be noted that ATM does not allow cells to be re-
ordered, thus the number of possible splices is limited to
those that merely drop, and do not reorder, cells.

Several conditions must be met for a splice to be valid.
First, AAL5 stores the length of the packet in the last cell,
so the size of the splice must be consistent with the AAL5
length in the last cell. Second, because AAL5 specially
marks the last cell of every packet, the last cell of the first
packet cannot be part of the splice. Third, the first 40 bytes
of the first cell must be a valid TCP/IP header (i.e., have a
length consistent with the packet length and certain bits must
be set). Unless all three of these requirements are met, the
splice will be easily detected without checking the CRC or
checksum.

If the three requirements are met, then the splice has to be
detected by either the AAL5 CRC (CRC-32) or the higher

2



layer protocol’s checksum (such as the TCP or Fletcher’s
checksum).

In 1993, an informal study by Bill Marshall and Chuck
Kalmanek at AT&T Bell Labs simulated file transfers from
a UNIX filesystem (using real data from the filesystem)
and examined the performance of the AAL5 CRC. They
found a surprising number of cases where the packet splice
passed the AAL5 CRC, leading them to wonder if the AAL5
CRC was strong enough. With Marshall’s and Kalmanek’s
assistance, the authors set out to do a more complete set
of tests. Those results were reported in an earlier version
of this paper, presented at SIGCOMM ’95 [7]. Some open
questions and surprising results led us to perform a new and
more comprehensive series of tests to resolve these issues.

3.2 Testing Splices

Our test program simulated a file transfer with the File
Transfer Protocol (FTP) of all files on a file system (or
selected directories of a file system) via TCP/IP using AAL5
over ATM. All IP and TCP header fields were filled in as if
the file transfer were being done over the loopback interface
(127.0.0.1). For each packet, the TCP sequence number
was incremented by the data length, and the IP ID was
incremented by one. The program then examined all possible
splices of two adjacent TCP segments and checked to see
if either the TCP checksum or AAL5 CRC failed to detect
the splice. The program did not concern itself with splices
whose data exactly matched a valid packet, nor with those
splices that were detected by IP, TCP, or AAL5 header/trailer
checks.

The test program was run over file systems at Network
Systems Corporation (NSC), the Swedish Institute of Com-
puter Science (SICS), and Stanford University. The TCP
segment sizes examined were 256 bytes long, except for runt
packets at the end of files. The first row in Tables 1 through
3 counts the total number of splices inspected. The next row
counts how many invalid splices were detected by simple
header checks, and so did not need to check the checksum.
The row labeled ”Identical data” records how many splices
resulted in packets that were identical to one of the original
packets, and hence would not result in corrupted data (the
checksum, of course, was identical). The ”Remaining” pack-
ets were all incorrect and depended on the checksum and the
CRC to detect the corruption. All percentages listed are com-
puted as percent of ”Remaining splices”. The rows following
”Remaining” list the splices missed by the CRC test and the
TCP checksum test. There were no splices missed by both
CRC and the TCP checksum. The data from each site are
broken down by file system. The total number of splices is
greater than � �	� .

We would expect that the CRC of a splice would match
the CRC of the original AAL5 packet at a rate of 1 in � �	� (or
0.0000000232% of the time). Similarly, we would expect
that the TCP checksum would fail to catch bad splices at a

Table 1: CRC and TCP Checksum Results
(256 Byte packets on systems at NSC)

system code % remaining splices
nsc05 Total 7186841747
46411 files Caught by Header 3593444113
4856193 pkts Identical data 17498067
(98-05-04) Remaining splices 3575899567

Missed by CRC 0.0000000000 0
Missed by TCP 0.0459554853 1643322

nsc11 Total 6306945748
45627 files Caught by Header 3152782063
6896637 pkts Identical data 22324135
(98-05-04) Remaining splices 3131839550

Missed by CRC 0.0000000319 1
Missed by TCP 0.0610412816 1911715

nsc23 Total 4920441461
29444 files Caught by Header 2459789331
4372688 pkts Identical data 50703652
(98-05-04) Remaining splices 2409948478

Missed by CRC 0.0000000830 2
Missed by TCP 0.0568444518 1369922

nsc25 Total 8748322301
38187 files Caught by Header 4372322214
9531889 pkts Identical data 65900443
(98-05-04) Remaining splices 4310099644

Missed by CRC 0.0000000464 2
Missed by TCP 0.1103037608 4754202

nsc27 Total 5012189213
22319 files Caught by Header 2505005350
5461908 pkts Identical data 16574413
(98-05-04) Remaining splices 2490609450

Missed by CRC 0.0000000402 1
Missed by TCP 0.0439271199 1094053

nsc29 Total 5756622285
57299 files Caught by Header 2878637775
6314509 pkts Identical data 19999951
(98-05-04) Remaining splices 2857984559

Missed by CRC 0.0000000350 1
Missed by TCP 0.0552609704 1579350

nsc49 Total 5696462431
17663 files Caught by Header 2846361632
6196298 pkts Identical data 16371605
(98-05-04) Remaining splices 2833729194

Missed by CRC 0.0000000000 0
Missed by TCP 0.0766246826 2171336

nsc51 Total 4584391161
16864 files Caught by Header 2290882985
4990431 pkts Identical data 14136325
(98-05-04) Remaining splices 2279371851

Missed by CRC 0.0000000000 0
Missed by TCP 0.0693654262 1581096

nsc52 Total 8309068498
58132 files Caught by Header 4153260212
9082777 pkts Identical data 40561081
(98-05-04) Remaining splices 4115247205

Missed by CRC 0.0000000000 0
Missed by TCP 0.1726656418 7105618

3



Table 2: CRC and TCP Checksum Results
(256 Byte packets on systems at SICS)

system code % remaining splices

sics.se Total 3183838883
/src1 Caught by Header 1594737950
48,817 files Identical data 11000914
3,520,967 pkts Remaining splices 1578100019
(11-24-97) CRC 0.0000000000 0

TCP 0.0411719151 649734

sics.se Total 2902904306
/src2 Caught by Header 1450715240
11,492 files Identical data 12039586
3,162,423 pkts Remaining splices 1440149480
(11-24-97) CRC 0.0000000000 0

TCP 0.0344980161 496823

sics.se Total 12074080447
/src3 Caught by Header 6031140841
7,845 files Identical data 12062020
13,097,058 pkts Remaining splices 6030877586
(12-17-97) CRC 0.0000000000 0

TCP 0.0088341538 532777

sics.se Total 5025946678
/src4 Caught by Header 2512845921
33,912 files Identical data 22171407
5,496,043 pkts Remaining splices 2490929350
(12-17-97) CRC 0.0000000000 0

TCP 0.0198888017 495416

sics.se Total 21107489268
/issl Caught by Header 10557354562
204,601 files Identical data 126239615
23,178,376 pkts Remaining splices 10423895091
(12-17-97) CRC 0.0000000192 2

TCP 0.2238580377 23334727

sics.se Total 6560349785
/opt Caught by Header 3286741967
141,453 files Identical data 152672075
7,312,235 pkts Remaining splices 3120935743
(11-24-97) CRC 0.0000000320 1
0.2% executables TCP 0.1703438788 5316323

sics.se Total 8630623470
/solaris Caught by Header 4318348898
98,211 files Identical data 92736322
9,502,013 pkts Remaining splices 4219538250
(12-17-97) CRC 0.0000000474 2

TCP 0.1068534691 4508723

sics.se Total 33661656216
/cna Caught by Header 16832727499
248,611 files Identical data 196026754
36,859,417 pkts Remaining splices 16632901963
(12-17-97) CRC 0.0000000180 3

TCP 0.1866982627 31053339

Table 3: CRC and TCP Checksum Results
(256 Byte packets on systems at Stanford)

system code % remaining splices

smeg.stanford.edu Total 8863295657
/u1 Caught by Header 4442709123
198,352 files Identical data 25715994
9,901,213 pkts Remaining splices 4394870540
(8-20-97) CRC 0.0000000228 1

TCP 0.0707199443 3108050

pompano.stanford.edu Total 1197495954
/usr/local Caught by Header 599005787
11,468 files Identical data 6024593
1,314,390 pkts Remaining splices 592465574
(11-26-97) CRC 0.0000000000 0

TCP 0.0269563342 159707

rate of 1 in �
���

(or 0.001526% of the time). Observe that
for the CRC, the CRC must match the CRC of the second
AAL5 packet, while for TCP, the checksum over the entire
splice must equal zero.

The tables show that for real data, the CRC failure rate
is almost perfectly consistent with the expected failure rate
for random data, and is therefore not the subject of much
further investigation in this paper

�
. For TCP, however, the

story is different. Between 0.008% and 0.22% of the bad
splices passed by the header checks passed the checksum.
This is between a factor of 10 and 100 worse than expected,
and requires some explanation.

4 Explaining The TCP Checksum Failures
Why does the TCP checksum fail to detect so many splices?
The reasons have to do with the distribution of data values
and how data from one packet can be mixed with data from
another packet.

4.1 Failure Scenarios
We can compute the TCP checksum in pieces and then add
the pieces to get the complete packet sum. So, we can think
of the TCP checksum of a packet broken into ATM cells as
being the sum of the individual checksums of each 48-byte
cell.

The usual requirement for a splice to pass the TCP
checksum is that the checksum of the splice add up to
the checksum of the entire first packet contributing to the
splice. Because the splice contains cells of the first and
second packets, this requirement can also be expressed as
a requirement that the checksum of the cells from the first

�

The difference between our results and those of Marshall and Kalmanek
are the ”Identical Data” entries. Given that the payloads were identical, it
is not a failure if the CRC doesn’t detect these splices as no data-corruption
occurs. Their tests did not distinguish the cases of splices with identical data
from splices with different data but congruent checksums.
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packet not included in the splice must equal the checksum
from the cells of the second packet that are included in the
splice. If just one cell from the second packet is included in
the splice, this requirement reduces to the requirement that
the checksum of the cell from the second packet have the
same sum as the cell it replaces. In multicell replacements,
the sum of the mixes of cells must be equal.

4.2 Distributions of the TCP Checksum

Given random data, a good checksum or CRC should uni-
formly scatter the checksum values over the entire checksum
space. Obviously a checksum algorithm that does not uni-
formly distribute checksum values (i.e., has hotspots) will be
more likely to have multiple cells with the same checksum.
Theorem 6 in Appendix A proves that, over uniformly dis-
tributed data, the TCP checksum algorithm gives a uniform
distribution of checksum values � . Thus, any hotspots in the
distribution of checksum values are due to non-uniformity
of the data, and are not inherent in the TCP checksum algo-
rithm.

4.3 The Distribution of Checksum Values over Single
Cells

If the distribution of 16-bit words is completely uniform,
the chance of an arbitrary sequence of data in the first
packet having the same checksum as an equal-sized arbitrary
sequence of data in the second packet is �

���
, where

���
�
���

. However, the distribution of values over real data is not
uniform.

Figure 2 shows three plots summarizing the distribution
of checksum values on the filesystem /u1 on smeg.dsg.stanford.edu.
The x-axis represents different checksum values, sorted by
frequency to better show the distribution. In the PDF graphs,
the � -axis is the probability that the given checksum value
occurred. Fig. 2(a) shows the entire PDF, and (b) shows
a blowup of the most frequent 65 values (0.1%) The CDF
(fig. 2c) shows the same 65 values, but here the � -value for
a given � represents the cumulative probability that any of
the most common � values occurred. If the distribution were
uniform then the PDF should simply be a horizontal line at
�
���

, and the CDF a straight line with slope �
���

.
This data shows that the TCP checksum on real data has

hotspots. In the file system shown in the figure (smeg:/u1),
the top 0.1% of the checksum values occurred 2.5% of
the time. If one examines this distributional data over
many filesystems, one discovers two things. First, that the
single most common checksum value (usually zero) occurs
between 0.01% and 1% of the time. Second, that for 48 byte
cells the 65 next most frequently occurring checksum values�

The actual requirements are weaker: as long as the values of even one
word in the packet is uniformly distributed over all 	 ��


possible values, then
the checksum of the entire packet is uniformly distributed over all possible
values.

(0.1% of the checksum space) account for between 1% and
5% of the checksum values seen.

4.4 Checksum Distribution over Larger Blocks of
Data

Although for uniformly distributed data values the proba-
bility distribution of the checksum is uniform independent
of the length of the block of data, this is not true for non-
uniform data. In that case, the expected probability distribu-
tion of the checksum may be computed by

���� ��� ����������� ���� � �  !�"� � � �$#% !�'&

where
�  � ���

is the probability that the checksum over a block
of length ( is equal to

�
, and where

��#) 
is taken mod

�
.

The dotted line in Figure 2 labeled ”Predict ( � � ” shows
the expected distribution of checksums over blocks 2 cells
long, given the checksum distribution over one cell given by( � � .

So, if the non-uniformity is uniform – that is, that every
cell of data is drawn from the same probability distribution,
and that the sum is the sum of independent samples – then
we would expect the distribution of the sums to conform
closely to the dotted line in our graphs. The predicted value
for ( �

� is already close to uniform for all but the 20
most common values, even though ( � � is decidedly non-
uniform. Corollary 3 and Theorem 4 in the appendix show
that, regardless of the original distribution, the distribution
should get more uniform as ( increases.

However, our measurements show that the non-uniformity
extends to larger chunks than single words or cells, and that
the checksum of one cell is correlated with the checksums
of the neighboring cells. The lines labeled ( �

� , ( �+*
,

etc. show the measured distribution of checksums over
samples of blocks of length ( cells over real data in our
file system. The data does get more uniform (seen most
clearly in the CDF), but nowhere as quickly as it should if
the cells were roughly independent. We believe the samples
should be somewhat representative even of non-contiguous
blocks. Once again, the checksum values are sorted in
decreasing order of probability, to give a clearer picture
of the distribution. Note that even over the larger block
sizes, although the probability of a match decreases slightly,
the distribution is still significantly more non-uniform than
expected.

4.5 Filesystem-level Non-Uniformity Is Not The
Answer

Given the non-uniform distribution, what, then, is the
expected failure rate of the IP/TCP checksum in detecting
splices for a given distribution,

�
, of checksum values?

As discussed above, it is simply the probability that the
checksum over the cells missing from the first packet is
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Figure 2: Distribution of TCP checksum over blocks of ( cells in smeg.dsg.stanford.edu:/u1.
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equal to the checksum over the cells present from the second
packet. For a given probability distribution

�
this probability

is � � ��� �������
	 & � ��
� � � � � � � �

Table 4: Probability (as %) of checksum match for substitu-
tions of length ( cells.

Length Uniform Predicted Measured
1 0.001526 0.02126770 0.02126770
2 0.001526 0.00153019 0.01494399
3 0.001526 0.00152590 0.01348366
4 0.001526 0.00152590 0.01416288
5 0.001526 0.00152590 0.01108446

Table 4 computes this probability using the measurements
of the Stanford file system from Figure 2. It lists the
probability that the checksums of two blocks, each (
cells long, drawn from anywhere in the same filesystem,
will be equal. For each block of length ( cells, the
first column shows the expected probability given uniform
distribution. The second column shows the probability
predicted assuming each cell is drawn from the identical,
non-uniform distribution. (The particular distribution is the
one actually measured for single cells over the smeg:/u1
file system.) This corresponds to the predicted distribution
depicted by the dotted line in Figure 2. The last column
lists the probability actually measured for each block size
over the entire file system. We can see that even the milder
non-uniformity of packet-sized chunks noticeably affects
the probability of checksum failure, and that the failure
probability does not tail off with larger block sizes as it
should if each cell were independent.

Clearly, there is clustering and non-uniformity at a scale
larger than single cells. Yet even aggregating the data
over chunks of 1, 2, ... and 5 cells is not sufficient to

accurately predict the actual non-uniformity and failure rate,
which is still more than 10 times higher than this simple
model predicts. There are two issues our initial computation
ignores. First, we have measured the probability distribution
over the entire file system for chunks of ( cells, but we
know that distribution of data values is heavily dependent
on file type (binary vs. character, executable vs. GIF, even
Shakespeare vs. Joyce). Splices come from adjacent packets,
which usually come from the same file. Thus real failure
rates could be higher than the averaged global distribution
would suggest.

For example, consider an extreme (and extremely hypo-
thetical) case in which a file system consists of half binary
and half textual data. Imagine that 90% of the cell-sized
chunks of binary data had a checksum of 0x0000, and that
90% of the cell-sized chunks of textual data had a checksum
of 0x1F00. Considered globally, we’d find 0x0000 45% of
the time and 0x1F00 45% of the time, so �� � would be ap-
proximately 32% and we’d predict about 32% of the packet
splices would incorrectly pass the checksum. However, in
reality, for any given file the local distribution would find
the most common checksum 90% of the time, and thus the
failure rate would be about 81%. Therefore, the global distri-
bution of checksums (measured across an entire filesystem)
is not sufficient to accurately predict checksum failure rate:
a more localized distribution of checksums is needed.

Even this is not the whole story. If two cells have
congruent checksums because the data was identical, then
replacement of one cell by the other is not a checksum
failure – the packet is unaltered and no corruption will occur.
To accurately predict meaningful checksum failures, then,
we need to subtract ”both congruent and equal” cells from
the probability of a match. In a system with uniformly
distributed data the odds of finding two 48 byte cells with
identical data is 1 in � ����� , which is so unlikely as to be
utterly neglible. However, in practice it occurs far more
frequently. Our actual measurements show that the most
common reason for checksum congruence is identical data
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– identical splices occur 20 to 40 times more frequently
than congruent-but-unequal splices. This is another example
of non-uniform distribution of the data, but, in this case, a
benign one.

4.6 Localized Non-Uniformity of Data

Table 5 shows how the probability changes when we restrict
the comparisons to only look at local data. The first
column (identical to the last column in Table 4) displays the
probability of taking two blocks of data, each ( cells long,
from anywhere in the entire file-system, and finding that their
IP checksums were congruent to each other. The column
labeled ”Locally congruent” shows the same probability if
we limit the search to be within 2 packet lengths (512
bytes). (In order to increase the sample size for the local
comparisons, we did not restrict ourselves to contiguous
blocks). The final column shows how the probability
decreases when we exclude checksum matches for a pair of
blocks that contained identical data, as such a substitution
would not result in any data corruption. It is still significantly
higher than the global rate. (Recall, that if the data were
uniformly distributed then every entry in this table should
be 0.001526%). If the checksum failures are purely a result
of non-uniform distribution, then these sample probabilities
should track the measured TCP checksum failure rates.

Table 5: Probability (as %) of checksum match for substitu-
tions of length ( cells based on local data.

Length Globally Locally Excluding
( ( ) Congruent Congruent Identical
1 0.02126770 1.58305972 0.20704272
2 0.01494399 1.30267681 0.17226800
3 0.01348366 1.21236431 0.16614066
4 0.01416288 1.15970577 0.16316988

Table 6 compares this distribution data for several file sys-
tems with the actual rate of checksum failures for comparable-
length substitutions. It is important to note that the sample
data only deals in full-size cells, while the measured data
deals in 8 byte trailers, too. Thus the byte-length for the
sample data is simply

��� ( , while the byte-length for the ac-
tual data is

��� ( #����
. While the exact results vary for each

system, there are three things all share. First, they are all
in sharp contrast to the expected rate of 0.001526%. Sec-
ond, the local non-uniformity is significantly worse than the
global non-uniformity, and extends over packet-size blocks.
Third, the distribution samples correspond roughly to the ac-
tual failure rate. But the correspondence is only rough. A
small part of this is explained by the difference in byte-length
(mainly for ( � � ). Since ”Actual” decreases non-linearly,
we have not yet fully explained what is going on. Section
5.4 will return to this and explain the remaining discrepancy.
To convert these probabilities to a total failure rate depends

Table 6: Checksum failures on real data
Probability (as %) of checksum congruence for blocks of

length ( cells
smeg.dsg.stanford.edu:/u1

Predicted 0.0212677 0.0015302 0.0015259 0.0015259
Measured Global 0.0212677 0.0149440 0.0134837 0.0141629
Local Congruence 1.5830597 1.3026768 1.2123643 1.1597058
Exclude Identical 0.2070427 0.1722680 0.1661407 0.1631699
Actual 0.1026797 0.1581733 0.0907984 0.0568881

sics.se:/opt
Predicted 1.1422436 0.0150023 0.0016907 0.0015280

Measured Global 1.1422436 0.9493377 0.8852883 0.8291802
Local Congruence 10.7766645 9.6723695 9.3490614 9.0170788
Exclude Identical 0.3872216 0.4732675 0.6897936 0.6086173
Actual 0.1085216 0.5551069 0.2130342 0.1183174

sics.se:/src1
Predicted 0.0320218 0.0015407 0.0015259 0.0015259

Measured Global 0.0320218 0.0182235 0.0163506 0.0169735
Local Congruence 1.7774385 1.5562402 1.4326226 1.4595770
Exclude Identical 0.2537653 0.1938629 0.1418823 0.2196530
Actual 0.1037989 0.1143002 0.0499086 0.0283392

sics.se:/src2
Predicted 0.0204720 0.0015312 0.0015259 0.0015259
Measured Global 0.0204720 0.0154869 0.0146764 0.0140808
Local Congruence 2.1467761 1.9016190 1.8495718 1.7812772
Exclude Identical 0.1094778 0.0995097 0.1345251 0.1108649
Actual 0.1747045 0.1339748 0.0429196 0.0210642

on the likelihood of substitutions of each given length. The
odds that a substitution of a given length occurs depends on
the type of errors one expects. In our simulation, we can
exactly characterize the probability of a ( -cell substitution
for � -cell packets. (Our typical packets of 256 bytes con-
tain 7 cells). For a splice to be valid the trailer cell of the
first packet must be dropped and the trailer cell of the sec-
ond packet must be kept. Further, to pass the header checks,
the header cell of the first packet is usually kept. Therefore,
we have ��� # *

cells to choose from, with the leading and
trailing cells already specified. So there are�

�	� # *� # ��

total splices (462 for 7 cell packets) that might pass the
header checks. There are� � # �( # ��
 � � # �( # ��

splices of length ( . Our simulation treats every possible
substitution as equally likely. This clearly might not be true
in all situations. However, the breakdown by substitution
length in Table 5 is enough to show that the failure rate will
be worse than expected for all substitutions, regardless of
length. The only question is exactly how bad.
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5 Reducing Checksum Failures
In this section we look at various ways to reduce the
checksum failure rates.

5.1 Regaining a uniform distribution: compression
We claim that the TCP checksum’s failure to detect many
splices is due to the non-uniform distribution of the data
being summed. One obvious way to deal with non-uniform
data patterns is to compress the data. As an experiment to
verify that our diagnosis was correct, we compressed all the
files in the file system at SICS that gave the TCP checksum
the most trouble ( /opt on fafner.sics.se ) and ran
our tests on the compressed files. (The compression was
Lempel-Ziv, and was performed using the UNIX compress
command.) The results are shown in Table 7. The
interesting result is that the number of splices that passed
the checksum is approximately 0.0021%, which is close to
the expected rate on uniform data of 0.0015%. This result is
a hundred-fold improvement over the .17% miss-rate before
compression. So compression clearly helps.

Table 7: CRC and TCP Checksum Results, Compressed
Data

(256 Byte packets on systems at SICS)
system code % remaining splices
fafner.sics.se Total 1549869756
compressed Header 773945117
/opt Identical 51902
1,679,166 pkts Remaining 775872737
(5-9-95) CRC 0.0000000000 0

TCP 0.0021002156 16295

5.2 Alternative checksums: Fletcher
It is not always possible or desirable to compress the data.
Another obvious question to ask is whether, without data
compression, another checksum algorithm would perform
better than TCP’s. An obvious candidate checksum is
Fletcher’s checksum[13]. � With our error model, where cells
are dropped but no random data is inserted, we might expect
the positional � term to improve error detection.

As with TCP, we can compute and analyze Fletcher’s
checksum over individual cells rather than entire packets.
Recall that the � term of the Fletcher checksum is computed
by multiplying each byte by its offset from the end of the
packet. We can also compute a local Fletcher checksum over
one cell

�
as

� � , and � � . To compute the contribution of
an individual cell to the total Fletcher sum for the packet,
we add

� � to
� ����� ���� and add

	 � to � ����� ���� , where
	 � �



Unlike [13], our Fletcher’s results perform a sum-to-zero inversion on

the transmitted checksum. See Sec. 6.3.

� � ��� � �� & and  is the offset of the end of the cell from
the end of the packet. It should be noted that since all the
shifts of data are by a multiple of the cell size (48 bytes), the
contribution of the � term for each cell to detect motion is
limited to 1 from, at most,

� ������� � ��� ��� &
values (85 and

16 for 1 and 2’s complement, respectively). Both 85 and 16
are considerably smaller than

�
(255 or 256, respectively).

Table 8 shows the actual results for both 1’s complement
(mod 255) and 2’s complement (mod 256) Fletcher’s check-
sum over several filesystems. The results of the TCP check-
sum on those filesystems is included for comparison.

We see that Fletcher’s, in general, out-performs the TCP
checksum, and in some cases comes within a factor of 2
to a 1 in �

���
miss rate. This performance is curious given

our results so far. First, Corollary 8 in the Appendix shows
that, for uniformly distributed data and replacements larger
than single words, Fletcher should not be any stronger than
IP/TCP. Second, two empirical measures show that both TCP
and Fletcher have a similar non-uniform distribution over
individual cells. When looking at plots of checksums over
48-byte cells (Figure 3), the Fletcher’s checksum looks to
have a non-uniform curve similar to that of TCP. And when
we look at the probability of the checksum that two randomly
chosen cells � in the file system match each other, we find a
probability of 0.016% for Fletcher 255, 0.013% for Fletcher
256, and 0.011% for IP/TCP.

Table 8: Fletcher’s Checksum Results
(256 Byte packets on systems)

Missed
System by % splices
sics.se TCP 0.1703438788 5316323
/opt F255 0.0044358811 138441

F256 0.0091286724 284900
smeg.stanford.edu TCP 0.0707199443 3108050
/u1 F255 0.0862324604 3789805

F256 0.0046759739 205503
pompano.stanford.edu TCP 0.0269563342 159707
/usr/local F255 0.0022121117 13106

F256 0.0029058228 17216
sics.se TCP 0.0411719151 649734
/src1 F255 0.0067998225 107308

F256 0.0054134085 85429
sics.se TCP 0.0344980161 496823
/src2 F255 0.0023053857 33201

F256 0.0039193848 56445

Why then does Fletcher perform better than the TCP
checksum? The most obvious effect is that the positional
dependence of Fletcher’s checksum effectively increases the
�
This includes all cells, including the short cell at the end of each packet,

so the number does not match the ”Measured Global” for ����� , given
earlier.
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Figure 3: PDF of TCP checksum, F255, and F256 over 48
byte cells in smeg.dsg.stanford.edu:/u1. Most common 256
values.

number of cells changed in a splice. The vast majority of
splices which pass IP and TCP header checks include the
header cell from the first packet, and therefore the checksum
field from the first packet. Each cell from the first packet
not included in the splice moves all the subsequent cells
from the first packet closer to the start of the splice - thus
increasing the  � s component of their contribution to the
� field of the splice’s checksum, when compared to their � contribution to the first packet’s checksum. And even if
the inserted cells from the second packet are identical to the
dropped cells, their  � s for the dropped cells is different
than the  � s of the inserted cells, as they appear later in the
splice than in the first packet. The positionality of Fletcher’s
checksum means that the effective size of the splice is not
just the total number of cells replaced, but includes any
intervening, ”reshuffled” cells from the first packet which lie
between the first drop and the last replacement. (Note that
this result has no effect on splices that join a prefix of the
first packet to a suffix of the second.)

We know that the larger the number of cells, the more uni-
form the distribution, and thus, the lower the failure rate.
However the increased substitution size is not sufficient to
explain Fletcher’s improvement over IP/TCP. If this hypoth-
esis were true, the Fletcher miss rate should correspond, at
best, to the ”Actual” rate for ( � �

in Table 6. Instead, it’s
10 times better. The reshuffling effect is real, but merely in-
creasing the effective number of cells in a splice is only a
small part of the story.

The real cause is more subtle. Recall that the condition
for checksum failure is that the sum of the 8-bit

� � s be
congruent and that the sum of the � � � � � �� � & s also be
congruent. The condition on the

�
’s is identical to the

condition for IP checksums. Since the data cells are drawn
from the same highly localized non-uniform distribution,
their 8-bit

� � terms have a fairly good chance of being
congruent – at least 256 times more than the standard 16-

bit TCP sum. But for the � term, each of the
	 � terms

for individual cells are multiplied by  � . This permutes
the entire distribution. Thus, a given highly probable

�
drawn from one

	 � is unlikely to be drawn from
	 � , the

distribution of
	

terms for a nearby cell drawn from the
same distribution. In effect, the contribution of each cell
to the � term of its packet is colored by its offset from
the end of the packet (think of coloring the cells by their  �
number). This coloring, and the non-uniformity, combine
to make undetected splices less likely. It is well known
(we provide a proof in Lemma 9) that the probability of
drawing two identical values from a non-uniform distribution
is always higher than the probability of drawing two values
that differ by any fixed amount. (This is discussed further
in the Appendix). Since the data is non-uniform, some terms
are more likely than others. The coloring effect of the � term
means that the overall � sums of a splice are less likely to
be congruent to the original checksum than if the data was
uniformly distributed.

The end result is that the standard TCP checksum fails if
two observations drawn from the same distribution are equal,
while Fletcher fails if two observations drawn from the same
distribution differ by a particular amount (where the exact
amount varies from splice to splice). Thus, non-uniformity
of the data actually strengthens the � field of the checksum.
(This was probably not an intentional benefit planned by
Fletcher.)

Ones complement Fletcher, however, has a weakness that
sometimes offsets its probabilistic advantage: since bytes
containing either 255 or 0 are considered identical by the
checksum, certain common pathological cases cause total
failure of Fletcher-255. This is discussed in more detail in
Section 5.5.

5.3 Trailer Checksums: Making non-uniformity
work for us

Fletcher-256 succeeds in detecting more splices than TCP
by taking advantage of the non-uniformity of the data
distributions, but it still has drawbacks. It is more expensive
to compute, and the non-uniformity can only strengthen 8-
bits of the checksum. It turns out that we can use a similar
trick to exploit non-uniformity for the standard Internet
checksum, with no computational cost. Further, we can
strengthen the entire 16 bit sum, giving us (for some
distributions) 16 bit checksums that are even stronger than
1 in �

� �
.

The key observation is that with header checksums, the
packet header and the packet checksum are located in the
same cell of a packet. Thus, either both the header and
the checksum covering it are present in a given splice, or
neither are. The IP header check and syntactic TCP header
checks ensure that almost all splices which are actually
checksummed include the header from the first packet. The
resulting splices will have the first packet’s TCP header,
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Figure 4: Header checksum fate

including TCP sequence number, ACK field, and checksum.
As long as the replacement cells in the splice have the same
overall checksum as the original packets, the TCP checksum
will not detect the splice. Figure 4 shows one such splice
diagrammatically. If the TCP checksum was at the end of
the TCP packet, instead of in the header, the TCP checksum
value would not share fate with the TCP pseudo-header
which it covers. Figure 5 shows the same splice as Fig. 4,
but with the TCP checksum located in a packet trailer instead
of the packet header. Here, the resulting splice has the
TCP header from the first packet and the checksum from
the second packet. (It also has the header from the second
packet, but only half the splices will do so.)

The data cells are, as with Fletcher’s sum, all drawn from
the same localized non-uniform distribution and are more
likely than 1 in �

� �
to have congruent sums. But compare the

two headers. The only field that changes between adjacent
TCP packets in a given flow is the TCP sequence number.
The difference between the checksums of the header cells
of adjacent packets in a single flow is therefore strongly
clustered around the size of the payload. In other words
there are actually three different distributions of cells in
a packet pair: the payload data, the first header, and the
second header. If we separate the checksum value away
from the header that it sums and put it in a trailer, we
can ensure that there are always three different colors in
any given splice – even for splices that only make color-
preserving substitutions (e.g., data cell for data cell). Again
by Lemma 9, this higher degree of coloring leads to a higher
probability of detecting a splice than the standard header
checksum, as we show below by case analysis

�

.
What is the probability of a trailer checksum failing? It’s

�

Our study of trailer checksums was originally motivated by noticing
that the AAL5 trailer checksums avoided this fate-sharing, and conjecturing
that the predictable header differences would make TCP checksums better.
It performed surprisingly well, leading us to the preceding re-analysis of the
Fletcher checksum results.

Cells of First Packet Cells of Second Packet

Cells of Spliced Packet

1-1 1-2 1-3 1-4

hdr 1

sum 1

2-1 2-2 2-3 2-4

hdr 2

sum 2

1-1 1-3 2-1 2-4

hdr 1 hdr 2

sum 2

Figure 5: Trailer checksum fate

simply that the checksum of the cells inserted from the first
packet equal the checksum of the cells dropped from the
second packet. (Note that we take the second packet - the
source of the trailer sum - as the original, and counting cells
from the first packet as insertions,) However, the inserted
cells always include a header cell. The inserted cells from
the first packet thus have a sum drawn from a distribution that
consists of 1 header cell and ( data cells. If the second header
is dropped, then we again have ( data cells and 1 header cell.
However, in half of the splices the dropped cells are all data
cells, in which case their sum consists of ( � � data cells.
The resulting probability will be lower than the probability
of an exact match between two checksums drawn from the
same distribution (as shown in Lemma 9). This would seem
to reduce the failure probability by at most a factor of two.

In the remaining half of the splices, the second header
is also dropped. Here the distribution of checksums of
the header cell of the second packet does not match the
distribution of the first header cell. There are two causes
for this result. First, we treat the first header as a header but
the second as data, which means we checksum the IP header
of the second cell, but not of the first. Second, the header
is mostly constant between packets except for an increase in
the IP ID field and the TCP sequence number. (Note that in
this scenario there is no checksum in the header: the field
is left zero; though a practical trailer implementation might
perhaps choose to swap the checksum value and the last two
bytes of the packet.)

How much lower will the probability of failure be? We
conducted an experiment to measure the effectiveness of
trailer checksums. We changed the simulator to model
a protocol identical to TCP, except that the TCP header
checksum is left zero, and the checksum value is appended
to the end of the TCP data. The results are shown in Table 9.
The failure rate of trailer checksums were significantly better
than those of TCP and Fletcher. We note that the failure rate
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was actually below �
� � �

for significant fractions of some
file systems. In most cases we noted a failure rate 20 to
50 times lower than for header checksums. We can further

Table 9: Trailer Checksum Results
(256 Byte packets on systems)

Filesystem TCP Misses Trailer Misses
Uniform 0.001526 0.001526
sics.se:/opt 0.170344 0.004105
smeg.stanford.edu:/u1 0.070720 0.001735
pompano.stanford:/usr/local 0.026956 0.001604
sics.se:/src1 0.041172 0.002351
sics.se:/src2 0.034498 0.002100

test the distribution-coloring analysis by making predictions
about the standard header TCP checksum. The number of
splices which do not include the header of the first packet
are negligible, so there are only two cases: the first header
cell followed by all-data cells, and the header from the first
packet followed by a mix of data cells and the header from
the second packet. In the latter case the splice has replaced
a data cell with the header cell from the second packet,
and thus should be much less likely to match than the first
case. When we went back and examined the data, this
prediction was correct. Although roughly half of the splices
surviving the header check have the second header included,
only 1 in �

���
of those passed the TCP checksum. The

TCP header checksum was 100-200 times more effective
against splices that contained the second header. This result
both supports our explanation of the good performance of
trailer TCP checksums, and further confirms the utility of
our distribution-coloring analysis of checksums.

5.4 Adding cell-coloring to our model

We are now ready to return to the discrepancies between our
”Exclude Identical” probabilities in Table6 of Section 4.6
and the actual measured failure rate. Recall that our sample
probabilities predicted total failure rates very accurately for
small ( (the number of cells in a block), but by the time( increased to 4, the model over-predicted the measured
failures by a factor of 3 or 4.

The piece that was missing from our model was the
cell-coloring. The sample probabilities in our model were
computed using only pure data cells, and thus missed
the header effect. In our actual splice simulation, some
substitutions of ( cells replace a data cell with a header cell.
The failure rate for the substitutions with headers should be
1 in �

� �
, which is ignorable.

What is the probability that a substitution of length (
replaced a data cell with a header cell? This is easy to
compute. All ( cells dropped from the first packet will be

data cells. There are � �
( # � 


possible choices of ( cell insertions from the second packet
(recall that we must insert the trailing cell of the second
packet in the splice). Of these, only���

( # � 

do not contain the header cell of the second packet. There-
fore, to predict the actual failure rate of a ( -cell substitution
from our ”Exclude Identical” samples, we must reduce the
sample probability by a factor of

� ��� ���� ��� � �
which equals ��� # ( & � � . Our sample probabilities now
closely match the actual measured failure probabilities,
and we are reasonably confident that we have explained
the behavior we have observed. Further, the improved
performance due to trailer checksums in our packet-splice
model seems to be real.

In the past, protocol designers have proposed trailer
checksums for various engineering reasons. As far as we
know, the argument about improved checksum behavior was
not advanced. We conclude that protocol designers should
reconsider placing checksums in packet trailers rather than
headers, as has been standard practice in Internet protocols
to date.

Trailer checksums suffer one apparent drawback. They
may unnecessarily reject splices that are identical to an
original packet. Consider the scenario where a burst of
cell loss splices the front of one packet onto the tail of
the following packet, as in Figure 4. If the payload of the
splice is identical to the payload of the original packet, then
the header checksum should match (since the header of the
splice is the header of the first packet), and the packet is
accepted. But with trailer checksums, (as in Figure 5, when
the payload is identical to the first packet the checksum
cannot match: it was computed with the sequence number
of the second packet, not the first. So if the contents are
identical the checksums will match only if the difference
between the inserted and dropped cells is congruent to the
difference in sequence number (the payload) between the
two packets. By Lemma 9, this is very unlikely. Thus the
splice will be rejected even when the contents is correct. The
corresponding case (header of the second packet, payload
of the first) never comes up, since our error model requires
cells to remain ordered. In summary, trailer checksums have
a very good chance of detecting a splice even if the resulting
packet is a ”good” packet.

Table 10 demonstrates this effect on the filesystem /u1
at smeg.dsg.stanford.edu. The number of identical splices
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rejected by trailer checksums is larger than the number of
bad splices they detect that the TCP checksum missed.

The two numbers, however, are not comparable. TCP
missed checksums represent undetected data corruption.
Spurious rejection by the trailer checksum represents (at
worst) a possible performance penalty, it does not cause any
data corruption.

Table 10: Header vs. Trailer Checksum Failure Rates

False Positive/Negative header trailer
Fails checksum, data identical 0 25,348,910
Passes checksum, data changed 3,108,050 76,270

Fails checksum, data identical 0.0% 0.57%
Passes checksum, data changed 0.07% 0.002%

Comparing missed splices, the trailer checksum misses
less than 3% as often as the standard sum, but at the cost
of reporting checksum failure on splices that accidentally
resulted in a valid packet.

However, a splice in a real network always means that at
least one packet has been lost, even if the splice is identical
to one of the original packets. So a TCP retransmission will
be necessary regardless. Thus the incremental performance
impact of triggering retransmission one packet earlier when
an identical splice is discarded is not clear.

5.5 Locality of Failure: Pathological Data Patterns
Non-uniformity in the distribution of checksums comes from
two causes: non-uniformity of the underlying data, and
weakness of a given checksum algorithm for certain patterns
of data. That files on a computer system are highly structured
is no surprise. We did not expect, however, to discover so
many examples of files that were particularly vulnerable to
splice-errors.

Though the Fletcher checksums consistently show a lower
rate of failure than the standard Internet checksum, they also
show a very high degree of locality. Sampling the checksum
statistics incrementally during each whole-filesystem run
showed sharp spikes in the rate of undetected splices, at
the level of individual directories or even files. Manual
examination of these files shows that, for each of the
checksum algorithms, real data contains pathological data
patterns which cause extremely localized rates of high
failure.

The most dramatic case is the mod–255 Fletcher sum.
This sum has two zeros, 0 and 255. Both these values
contribute zero to the cell checksum. Thus, Fletcher mod
255 is susceptible to splice failure on long runs of mixed 0
and 255 bytes. The most dramatic example of this effect is
one directory from the Stanford filesystem containing several
8-bit .pbm graphs of Internet-backbone RTT measurements.

These graphs were plotted as black-and-white, and thus
each byte is either 0 or 255. On these data, combinatorially,
1 in 2 of all permutations are caught by header checks and
1 in 2 of the remainder include a header cell. None of the
remaining 25% of all possible permutations are caught by
the mod-255 fletcher. This one directory of files caused so
many Fletcher mod-255 failures that on this filesystem, mod-
255 Fletcher performs worse than the IP/TCP checksum.

Similarly spectacular mod-255 failures occurred in the
Stanford filesystem with a file from a popular PC word
processor. This file contained runs of approximately 200 all-
zero bytes, followed by a similar number of all-one bytes,
between each section of a document.

Fletcher’s mod-256 sum behaves slightly differently. It
has only one zero, and is not subject to the same dramatic
failure as the mod-255 sum. Pathological data patterns
for mod-256 do occur, but less frequently. One case
we have isolated is hex-encoded PostScript bitmaps which
contain identical segments of horizontal lines (e.g. bitmaps
containing solid blocks of color, or bitmaps containing
parallel lines. Font definitions appear to be a particularly
common case). Many common bitmaps appear to have a
width,

�
, that is a power of two. Thus, each ASCII-

encoded binary line commonly consists of many ”FF”s, and
a small number of other two byte values (e.g. ”F7”) that
repeat precisely

� � � apart (The extra byte is due to
an ASCII newline.) Though not immediately obvious on
inspection, these just happen to combine in such a way that
the contribution of 48-byte cells allows splices. We observed
a similar effect in BinHex-encoded Macintosh documents
stored on our Unix filesystem: very similar lines of 64 bytes
followed by an ASCII newline.

Though the overall rate of TCP sum failures is higher
than the other sums, and appears to be noisier, we have also
isolated a few pathological cases for the standard Internet
checksum. One example is Unix gmon.out profiling data.
These files often consist mostly of zero entries, with a
scattering of a small number of nonzero entries. The
non-zero values are often identical. Packetizing this data
results in a very small number of checksums. A very large
number of splices pass the checksum, resulting in what
appears to be scrambled files. A second example is the
PostScript bitmap data file mentioned above, which showed
pathological behavior for the Internet checksum as well.

Our central point is that the existence of pathological
patterns for a given sum is not just theoretical; these patterns
occur surprisingly frequently in real filesystem data.

6 Conjectures

In the course of our research we investigated several plausi-
ble conjectures that might have explained the TCP checksum
failures. We briefly describe several of these blind-alleys.
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6.1 The Role of Zero Data

The frequency of the zero checksum led us to study the
effects of zeroed data on the checksum. It is no surprise
that there are a lot of zeros in filesystem data (the UNIX
filesystem has long been optimized such that completely
zero blocks did not need to be saved on disk). However,
knowing that arbitrarily long zero blocks do not change the
IP checksum (zero is the additive identity), we wondered
whether this property significantly affected the failure rate
independent of the simple fact of their high frequency. In
other words: Is there something special about zero? If we
replaced all the zeros in the file-system with different values,
would the failure rate change?

An approximate first answer is ”no, zero is not special
because it is the additive identity”. If we add one to every
word in the file system then the sum of every cell would
increase by 24 (48 bytes divided by 2). Similarly, it is easy to
demonstrate that the distribution of the sum of any number
of cells will contain the same set of values and frequencies,
although their mapping will be permuted. So the rate of
checksum failure would be unchanged.

�

It is, however, true that if any single value shows up a
disproportionate amount of the time then the failure rate
will increase. However, the reason that zero in particular
is so common is that several totally independent formats all
”happen” to choose zero as a common element. Further, it
is likely that this will continue to be the case. Fortunately,
although zero checksums do show up very frequently, it
is often the result of cells consisting entirely of zeros. A
substitution of one all-zero cell for another causes no harm.
The problem, therefore, is the frequency of non-zero cells
whose checksum is zero, in proximity to all-zero cells or to
each other.

6.2 Zero congruent IP/TCP header cells

The TCP checksum is computed over a pseudo-header that
covers all but eight bytes from the IP header. In our original
simulations, those eight bytes of IP header – including the
IP checksum – were not filled in. The TCP checksum is
then inverted before it is stored in the header. This causes
the checksum of an error-free TCP datagram, (including the
TCP header), to be zero.

A full IP header also contains an inverted ones-complement
checksum, which meant that the sum of the IP header was
also zero. Since all but 8 bytes from the IP header are also
covered by the TCP checksum, the checksum over the entire


Zero is special, as we showed in the section on pathological cases,
but not because it is the additive identity and does not affect the checksum.
Zero’s specialness comes from the fact that it is represented by both 0x0000
and 0xFFFF. In reality, adding 1 to every word in the file system would
change the distribution of checksums, and might reduce the probability of
the most probable value. Cells containing 0xFFFF’s would be shifted by
less than 24. Whether this would increase or decrease the most probable
value depends on the distribution of values in each filesystem.

cell headers is not zero, but rather the checksum of the over-
lap: IP source and destination addresses, the length, and the
TCP protocol ID.

Our earlier results ([7]) were based on simulations that left
those eight bytes unfilled. Consider, however, two packets
consisting of data that is all zero. This causes the header
cell (when considered as data) to have a checksum of zero.
The checksum will only be the sum of the header. When
the checksum is inverted and stored into the header, we are
left with a non-zero cell with a checksum of zero. In our
earlier work, these cells were a major source of non-zero
cells with a checksum of zero. What is worse, these cell
show up precisely in the case when all the cells around it are
zero cells (or at least zero-congruent). Thus replacement was
common and a major source of splice failures. Filling in the
IP header reduced the error rate by three orders of magnitude.

We had conjectured that filling in the IP header would not
have much of an effect, because the length, IP addresses,
and protocol type do not change between packets during
the file transfer, and so the checksums of the header cell
remain constant. However, even a constant, non-zero, value
is sufficient to distinguish between header cells and zero
filled data cells. This simulator deficiency also led us to
give undue emphasis to the role of zero-congruent data (as
mentioned above).

6.3 Inverted Checksums

Under the TCP and IP specification, the inverse of the
checksum is placed in the packet header. This implies
that the checksum of a valid segment will be zero. In [7]
we cautioned implementors against this approach, since for
mostly–zero packets the header cell, too, would be zero. This
still is reasonable advice for packet formats as it reduces the
frequency of zero congruent cells. However, it is not relevant
to TCP and IP because of the overlap of the headers we
noted above. To test this conjecture, we ran our tests with
a modified version of the TCP checksum that did not invert
the checksum before storing it into the packet. The results
with the non-inverted checksum were almost identical to the
results with an inverted checksum.

6.4 Corrections to SIGCOMM 95 version

As noted in Sec. 6.2 the data in our earlier paper[7] is not
accurate. Completely filling in the IP header reduces the
overall rate of errors by a factor of from 200 to 1000. In
addition, the Fletcher checksum code was mis-implemented
as a mixture of mod-255 and mod-256 arithmetic, which
led to the Fletcher splice failure rate being higher than the
standard TCP checksum. We retract that result; it was an
artifact of the buggy Fletcher implementation. That bug
was also the motivation for our current investigation of both
mod-255 and mod-256 Fletcher sums. The artificially-high
Fletcher failure rates also inspired the original work on trailer
checksums.
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The previous results also suffered from a number of other
minor bugs, whose effect was insignificant compared to the
two problems above. They are detailed in the Appendix.

7 Observations and Recommendations

The results of the previous sections lead to a number of
interesting observations.

First, a non-uniform distribution of data makes failure of
the TCP checksum far more likely than one would naively
expect. The undetected splice rate in our data for the 16-bit
TCP checksum over real data is comparable to uniform data
with a 10-bit checksum.

Second, checksum distributions on modest amounts of
real data are substantially different from the distributions one
would anticipate for uniformly distributed data. This skewed
distribution does result in significantly higher failure rates
of the TCP checksum. In particular, if a router or host has a
buffering problem that causes adjacent packets to be merged,
the TCP checksum might fail .1% of the time rather than
the 0.0015% of the time that purely random data distribution
would suggest.

While these scenarios may seem worrisome, there are
three pieces of good news.

First, it is important to keep in mind that these error
scenarios are all quite rare. This work was initially motivated
by studying extremely uncommon AAL5 error scenarios –
an error model derived from ATM cell drop splicing two
packets into one. In practice, such cell loss can occur due
to either congestion or corruption. However, dropping ATM
calls independently of each other is now known to cause
goodput problems [10]. ATM switch vendors are addressing
this problem by dropping all subsequent cells from a packet,
once a single cell is dropped. This reduces the probability
that a splice will be legal since a trailer will only be delivered
if all preceding cells have been delivered. The cells
from the partial preceding packets will result in a detectably
incorrect packet length. This means we can effectively
ignore congestion as a source of valid packet splices. Cell
loss due to corruption is often estimated at 1 in �

� � or less.
The ATM CRC will fail to detect a splice approximately at a
rate of 1 in � �	� . Therefore, the chance of the TCP checksum
being called upon to detect a splice is much less than 1 in
�
� � � � �

�
� � or less than one chance in �

� ���
. Moreover,

if ATM switch vendors institute Early Packet Discard not
just for congestion but for all causes of cell drop, then valid
packet splices should never appear.

Second, the packet splice model is, in some sense, a
worst-case error model because the substitutions tend to
be similar to the data that they replace. This is possibly
also true of buffer-management errors, or errors in fragment
reassembly. However, in the alternative error models where
data is replaced by garbage, while the non-uniformity of
the data may still reduce the effectiveness of checksums,

it will only reduce it to the extent that the distribution of
the replacement data matches the distribution of the original
data. Here, the frequency of long runs of 0’s or 1’s in the
payload may make us slightly more vulnerable to hardware
errors that produce similar runs of data. However, hardware
failure that produces random bits are unlikely to produce
runs of data that look a lot like English prose.

Third, and finally, remedies exist to improve the ability of
checksums to work on non-uniform data.
� Compressing data clearly improves the performance of

checksums. Since compression also typically reduces
file transfer times and saves disk space, there’s a strong
motivation for FTP archives to compress their files.

� In the future, in the absence of compression, protocol de-
signers should consider avoiding the practice of placing
checksums in a protocol header, but instead append them
as a trailer to the data being checksummed.

� In general, the checksums are rarely placed in a situation
where it is the primary method of failure detection.
(We are aware of one exception to this rule. The TCP
checksum is the primary method of error detection over
SLIP and Compressed SLIP links. That’s probably not
wise).

What this work simply shows is that checksums are an
even less effective error detection method than first thought,
because real data often has interesting distributions, and
those distributions increase the likelihood of checksum
failure.
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8 Appendix
This paper contains assertions which depend upon state-
ments that are easily proven, yet not immediately obvious.
Detailed explanations in the body of the paper would detract
from the main argument. For those interested in the formal
justification of some of our statements, we present more de-
tail in this appendix.

8.1 Distributions of checksums
We use the notation

� � 	
to denote the distribution which

arises by applying any commutative, total function � with a
unique inverse on a pair of values drawn from distributions�

and
	

respectively. (In all of our cases we are interested

in the usual arithmetic addition operator). Call PMax � � &the probability of the most likely value in the discrete
distribution,

�
. (We define PMin � � & similarly.) And define� � ���

is the probability of selecting
�

from
�

.

Lemma 1 PMax � � � 	 & ������� � PMax � � & � PMax � 	 & &
Proof: For any given � , the probability that the value

drawn from
� � 	 � � is given by � � � � � � � � � � � 	 � � # � � .

Assume � is the most probable element of � . Without loss
of generality, assume that PMax � � & � PMax � 	 & . � � � � �� � � � � � 	 � � # � � �

Pmax � � & � � 	 � � # � � �
Pmax � � &(since � � 	 �  !� � � ). Equality would only hold if
�

were
uniformly distributed and if

	 �  !�	�� ��
 � � � #% !�	�� �
. �

Lemma 2 If ���������� ���������! "��#$� %�&'�����(�)� , then PMin ���+*
#,�.-+/�0213� PMin ���4�5� PMin ��#6�7�

Proof: Consider the previous proof. Given the non-zero
condition on

	 �  !�
, we are guaranteed that every value in

	
appears, and so � � 	 �  !� � � , thus � � � � � � � � � � � 	 � � #� �98

Pmin � � & � � 	 � � # � �98 Pmin � � & . �This is unremarkable for unbounded discrete distributions.
For the maximum, as the number of possible values grows,
the probability of any single value must decrease. The
conditions on the min require that : � : 8 : 	 : , and that
: �4: � : � : , so it is also unsurprising that the minimum
doesn’t decrease. However, for bounded distributions, e.g
distributions over the integers mod

�
, this leads to the

following more interesting results.

Corollary 3 Consider a probability distribution
�

over the
integers mod

�
. The distribution of the sum, mod

�
, of

 
integers drawn from

�
gets “more uniform” as

 
increases,

in the sense that the minimum probability of any number gets
larger and the max probability gets smaller. �

Computation: If we have a random variable which can
take on

�
values, with a known distribution of values, then

the probability (
� � � ; � ( � ) of the sum,

;
, of

 
values drawn

from this distribution is equal to ( , is:
<�
=?>A@ ����BDC

� � EF�G��H$&'�I�J/LKNM�OP�RQS� � � ET�P����� (1)

�
Corollary 3 shows that each time we add another number

to the sum mod
�

and look at the probability distribution,
we increase PMin � � & and decrease PMax � � & . We can
prove another useful result: for large enough

 
, PMin � � &and PMax � � & both approach �

���
and the distribution

approaches uniform.
If
�

has some zero probability values, then some values
in the sum of

�
might also have zero probability, unless the

gcd of
�

and the entries occurring with non-zero probability
is 1. The following theorem applies even if a sum of a
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distribution only has
���

values with non-zero probability in
the following sense: all non-zero values will tend to be equal
to �

�����
.

Theorem 4 (a Central Limit Theorem) The sum, mod
�

,
of a large number of independent observations from any
distribution

�
tends to have a uniform distribution.

Proof: We will show that for any given ��� �
, there is

some
 

such that PMax � � � & � �
��� � � . Since PMax � � � &is non-increasing as

 
grows, we know this also holds for all(��  . Use the notation max � to mean PMax � � � & , and min�

to mean PMin � � � & , when the meaning is clear.
Assume there is a distribution,

�
, where max � � �

��� � �
for all values of

 
. We can compute a strict upper bound

for max��� � based on max� . The largest possible value
of max��� � will arise when the most probable terms from� � match the most probable terms from

� � (c.f. exercise
in Concrete Mathematics [3], at the bottom of page 38).
Assume the probability for the

� #
� most common values

in
� � are all max� , and there is 1 value whose probability is� �
���

. For
�

there is at least one value with probability
max � , one with probability min � , and

� #
� values whose

probability sums to �
#

max � # min � .
maxB�	 ��
 max @ maxB *

��	& max @ & min @ � maxB *
min @ �O

maxB�	 ��
 maxB & min @ Q � maxB & �
O �

maxB�	 ��
 maxB & min @ Q��
But after adding

 �
max � � � min � � & times, max� would be

less than 0, given our assumption that max � is always greater
than �

��� � � . So, our assumption must be false.
Thus, for any distribution

�
and for any � , there is some

number
 

of additions, such that PMax � � � &�� �
��� � � , so

the distribution of
� � tends to the uniform distribution as

 
gets larger. �
8.2 Distributions of some checksums over uniformly

distributed data

Most existing evaluations of competing checksum algo-
rithms have assumed that single bit errors were common. It
is now frequently true that there are CRCs in the data-link
layer to protect the integrity of cells on the wire, and ECC to
correct memory errors while packets sit in buffers on routers.
Thus, the errors that the TCP checksum must protect against
are no longer single or double bit errors (which will be de-
tected or corrected by other means), but rather substitution
of longer runs of “good” data by (possibly different length)
runs of “other” data. How do the IP checksum and Fletcher
compare under this substitution model?

This section discusses what their expected behavior would
be under substitution errors if the data were, in fact,
uniformly distributed

�

.
If we assume all packets are equally likely, then if we

look at any unit smaller than the size of the substitution,
we can assume that an error consists of replacements drawn
uniformly from all strings.

Lemma 5 The sum � mod
�

of � numbers, will be
uniformly distributed among all

�
values assuming there

is at least one term, � , in the sum which takes on values
uniformly distributed mod

�
Proof: Assume � # � mod

�
has an arbitrarily skewed

distribution. PMax � � & � �
���

, and PMin � � & � �
���

. By
lemma’s 1 and 2, �

��� 8
PMax � � & 8 PMin � � & 8 �

���
.

Thus, the probability that � � � for any given � will be
precisely �

���
, so the probabilities are all equal and the

distribution is uniform. �
Theorem 6 Given uniformly distributed data and the substi-
tution model above, the IP checksum of the modified packet
is uniformly distributed over all possible values

Proof: We assume that errors are replacements drawn
from the uniform distribution. Then (assuming replacements
larger than a single 16 bit word) every word within the re-
placed chunk will be uniformly distributed mod

�
. There-

fore, by Lemma 5, the IP checksum will be uniformly dis-
tributed under the assumed substitutions, since it is the sum
of uniformly distributed words. That is, the checksum will
only fail to detect errors (by the replacement string contribut-
ing an identical sum to the checksum as the original string)
with a probability of 1 out of �

� � #
� . �

Theorem 7 Given uniformly distributed data and the sub-
stitution model above, the Fletcher checksum of the modified
packet is uniformly distributed over all possible values.

Proof: The same reasoning can be applied to the Fletcher
checksum over a chunk of data of size � . The Fletcher
checksum consists of two sums. The first is the sum, mod�

, of all the bytes in the chunk. The second is the sum mod�
of each byte weighted by its offset,  , from the end of the

chunk. Call these two sums, respectively, � � and � � . The
contribution of this chunk (assuming it is �� from the end of
�
It is worth noting that one point of the preceding paper is that data

values are not distributed uniformly and are correlated with nearby values,
and that, therefore, errors, under the substitution model, are also not
distributed uniformly and checksums do not perform as well as expected.
This work on uniformly distributed data is still interesting on three counts.
First, statements in the main body of the paper depend on results presented
here. Second, it provides us with a benchmark against which to measure
the actual measured error rate (i.e. what is due to the substitution model
and what is do to non-uniform data). Third, encryption and compression
are both becoming more common and both tend to produce uniformly
distributed data.
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the packet) to the Fletcher checksum of the entire packet is
straightforward. � � is added, mod

�
, to the mod

�
sum of

the rest of the packet.  � � � � � � � is added, mod
�

, to the
weighted sum of the rest of the packet. If � � for each chunk
is uniformly distributed, then so will � � � . If each � � is
uniformly distributed, then so will � � �  � � � � � � �

&
,

since by Lemma 5 we only need one uniformly distributed
term (and � � is, although  � � � � might not be).

That � � is uniformly distributed follows directly from the
lemma. � � is only slightly more complicated. As long as
the chunks are large enough so that the there is a byte �
with offset  � from the end of the chunk, such that  � is
relatively prime to

�
(i.e ����� �  � � � & � �

�
&
, then � ’s

contribution to � � is uniformly distributed among all
�

values, and therefore � � itself is also uniformly distributed.
Since �� �

� is relatively prime to
�

, as long as the chunk
is at least �	��
�� �

�
bits long, we can apply lemma 5.

We must also show that � � is independent of � � , else� � � , � �� will not be uniformly distributed. Suppose the
last two bytes of the chunk are � � and � � . Under the
assumption of uniform distribution of the data, � � and � �
are both independent and uniformly distributed. � � does not
affect � � since it is multiplied by 0. As we show the uniform
distribution of � � by varying � � (as we did in the lemma
above), for each � � we can choose any value for � � to allow
� � to take on all values equally, without affecting � � . So,
for each value K that � � might take on, � � is independent
and uniformly distributed. �

One last complication arises with the Fletcher checksum.
Like IP, Fletcher defines the values inserted into the check-
sum field to be the negation of the checksum of the rest of
the packet, so that the packet sums to 0. With Fletcher this
requires the two bytes of the checksum to be the solution to a
system of simultaneous equations. We must show that these
two specific bytes are independent, since we can no longer
magically choose offsets 0 and 1.

Assume the Fletcher checksum
���

�
���

�� , is stored in
adjacent bytes with offsets  � and  �

�  � # � from the
end of the packet.

� ���
� � �

� � � � mod
�

, and� � � � � �
� �  � � �

� � �  � # �
&

mod
�

.

� � � O &����	& ���
� � � � *(� O &����	& ��� ��� � * ��� ��� � & � �
� � � � &�� � ���	& ��� � � * ��� � � & ���
� � � � &�� � ���	& ���

��� � � � &�� � ���� � � O &����	&�� � *�� � ���
� O *����)��� � & �D�R&�� �

Since � � is uniformly distributed mod
�

, so are both
�
�

and
�
� . Since

�
�
���

�
# � � mod

�
, then

�
� is still

uniformly distributed even if we hold
�
� fixed (since we can

vary � � internal to
�
� ). Therefore,

�
� is independent of�

� . �
Note that  � � � will not, in general, be uniformly dis-

tributed mod
�

, since we can’t assume that � �!� �  � � � & �
� (in fact, in our example,  � was always equal to 260.
����� � � � � � � � � & � � and ���!� � � � � � � � � & � �

).
As a curiosity, further note that if  �

#  � were not
relatively prime to

�
, then

�
� and

�
� would not have been

independent or uniformly distributed. (In fact, the equations
would not have always had solutions).

Corollary 8 Given uniformly distributed data, and the sub-
stitution model described above, IP and Fletcher checksums
are equivalently powerful �
8.3 Header checksums vs. trailer checksums

The body of the paper claims that under our splice error
model, trailer checksums are stronger than header check-
sums for nonuniformly distribute data and, no worse for uni-
formly distributed data. Here we prove that claim.

Lemma 9 Consider drawing 2 samples, " � and " � , from
any discrete distribution. The probability that " � � " � is
greater than or equal to the probability that " � � � " � �# & � 
�� � for any given

#
.

Proof: To see this, note that the probability of the former
(identical match) is simply � �� � � � � ��� � . The probability of
the latter (

#
greater than the first) is � �� ��� � � � �"� � � � # � , where� � #

is taken
� 
$� � . Double both sums and rearrange

terms. Since � � � � � � � � � � � # �
�
&T8

�
� � � �"� � � � # �

, the former
sum is greater than the latter sum. �

Consider our error model: we substitute
 

cells from the
first packet with

 
other cells from the second packet. We

keep the header cell of the first packet and we keep the
trailer cell of the second packet. For a header checksum to
fail, the sum

; � and
;
� of each collection of

 
cell partial

checksums must be equal. For a trailer checksum to fail, the
sum

; � of the
 

cells missing from the first packet must be#
less than the

;
� , assuming that the checksum of the header

cell of packet 1 is
#

less than the checksum of the header
cell of packet 2. We distinguish

#
, the difference between

the header cells, since the header cells are drawn from a
very different distribution than the data cells, and further, the
distribution of the difference of two consecutive header cells
is strongly clustered around

# �
�
� �

. Thus, we have:

Theorem 10 Under our error model of splicing, a trailer
checksum will always be at least as powerful as a header
checksum.

Proof: For any given splice we have substituted
 

cells.
Equation 1 on Page 15 gives us the probability distribution of
the sum of

 
cells. The probability that the header checksum

fails is the probability that two samples drawn from
� � are
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equal. As discussed above, for trailer checksums there is
a fixed

#
, usually 256 in our simulation, computable by

looking at the 2 header cells. The probability that the trailer
fails is the probability that two samples from

� � differ by#
. Lemma 9 above shows that the former is more likely

than the latter, thus header checksums are weaker than trailer
checksums. �

Note, that in fact, this depends only on the property that
the probability of the checksums over the header cells of two
adjacent packets be congruent is lower than the probability
that 2 data cells from the same packet be congruent. For
computing the actual probability of trailer checksum failure
it is useful to be able to model

#
as a constant 256, but this is

not required for the proof.

9 Retractions from the SIGCOMM ’95
paper

An earlier version of this paper appeared in SIGCOMM
’95 [7].

The central point of that paper still holds: non-uniform
distribution of data results in the IP checksum being weaker
than expected. Several conjectures expressed in [7] have
been resolved and were addressed in the main body of this
paper.

However, several minor points and computational details
were not correct and we retract them.

First, we expressed surprise (as well we should have) that
the Fletcher checksum performed worse than the IP check-
sum. Performance tuning of the Fletcher checksum code
used in that paper resulted in an incorrect implementation.
The Fletcher code also used a mixture of mod-256 and mod-
255 arithmetic and was not computing an accurate Fletcher
checksum for either mod-255 or mod-256 Fletcher.

The numbers reported for the Fletcher checksum in that
paper were, therefore, not accurate. The corrected numbers
reported in this version of the paper show the expected result
— Fletcher’s detects more splices than TCP. However, the
bugs in [7] and its anomalously poor results motivated us to
investigate both mod-255 and mod-256 Fletcher, uncovering
the pathological cases for mod-255 Fletcher reported here.

The SIGCOMM ’95 paper reports numbers where the IP
header fields not covered by the TCP checksum were left as
zero.

Though covered in the body of this paper, it is important
to emphasize it again here: filling in the header significantly
reduced the number of matches for zero-congruent cells, and
therefore reduced the total number of misses (by three orders
of magnitude in some cases). By filling in the IP header in [7]
we over-stated the significance of splices including zero-
congruent cells and focused too closely on misses involving
zero-filled or zero-congruent cells.

Several additional, but relatively minor bugs in the simu-
lator compromised the accuracy of the numbers of all check-

sum algorithms in [7] (but only to a small factor).
First, we used the AAL5 length from the second packet,

rather than the apparent IP length from the first cell, for
checksum computation. This miscomputed checksums by
including data from the last cell beyond the end of the IP
payload in the checksum.

Second, this same error arose when testing whether
packets were “identical” in payload. This resulted in
counting certain splices as checksum failures, when in fact
they were simply identical to the original packet, or where
the first packet was a prefix of the splice.

Third, we miscomputed the checksum for short packets —
that is, packets where the apparent IP header length made the
entire TCP packet fit into the first cell and the AAL5 trailer in
the second cell. It’s well-known that a TCP packet with any
user data fills at least two ATM cells. But for packets with
1 to 8 bytes of TCP payload, the entire IP/TCP datagram fits
in only one cell and the second cell contains only an AAL5
trailer. Knowing that TCP data packets always take two cells,
the simulation in [7] erroneously added a partial checksum
for the second cell.

These erroneous calculations did not change the larger
picture of TCP checksum performance, but did require us
to recompute all data for this version of the paper.

Finally, our code and raw data are available from the URL
http://www.dsg.stanford.edu/ ....
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